EMPLOYABILITY OF MACHINE LEARNING ALGORITHMS IN DEVELOPING EFFECTIVE SENTIMENT ANALYSIS
Shreyansh Balhara
Vol. 5, Issue 1, Jan-Dec 2019
Page Number: 249 - 255
Abstract:
In this review, Various machine learning methods are used for opinion analysis. For the most part, did feeling examination by using AI classifiers like SVM (support vector machine), Random Forest, Naïve Bayes. In this, we see a few papers that help the new specialists establish an appropriate way to explore further. In this, there is a proposed strategy for the latest research program. Online media is the greatest medium to impart individuals' insights on various subjects. Feeling examination using AI strategies and with no human interference, machines will give individuals a precise opinion. Opinion study transforms text into positive, negative or impartial. Thus, any organization, establishment, or film commentator can take individuals' viewpoints and make further strides, as shown by that.
References
- Soumya, S. and K. J. I. E. Pramod (2020). 'Sentiment analysis of malayalam tweets using machine learning techniques.'
- Gamal, D., M. Alfonse, E.-S. M. El-Horbaty and A.-B. M. J. P. C. S. Salem (2019). 'Implementation of Machine Learning Algorithms in Arabic Sentiment Analysis Using NGram Features.' 154: 332-340.
- Vanaja, S. and M. Belwal (2018). Aspect-level sentiment analysis on e-commerce data. 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), IEEE.
- Ezpeleta, E., I. Velez de Mendizabal, J. M. G. Hidalgo and U. J. L. J. o. t. I. Zurutuza (2020). 'Novel email spam detection method using sentiment analysis and personality recognition.' 28(1): 83-94.
- Chakraborty, K., S. Bhatia, S. Bhattacharyya, J. Platos, R. Bag and A. E. J. A. S. C. Hassanien (2020). 'Sentiment Analysis of COVID-19 tweets by Deep Learning Classifiers— A study to show how popularity is affecting accuracy in social media.' 97: 106754.
- Ahmad, M., S. Aftab, S. S. Muhammad and S. J. I. J. M. S. E. Ahmad (2017). 'Machine learning techniques for sentiment analysis: A review.' 8(3): 27.
- Arulmurugan, R., K. Sabarmathi and H. J. C. C. Anandakumar (2019). 'Classification of sentence level sentiment analysis using cloud machine learning techniques.' 22(1): 1199-1209.
- Chaturvedi, S., V. Mishra and N. Mishra (2017). Sentiment analysis using machine learning for business intelligence. 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), IEEE.
- Hasan, A., S. Moin, A. Karim, S. J. M. Shamshirband and C. Applications (2018). 'Machine learning-based sentiment analysis for twitter accounts.' 23(1): 11.
- Hassan, A. U., J. Hussain, M. Hussain, M. Sadiq and S. Lee (2017). Sentiment analysis of social networking sites (SNS) data using machine learning approach for the measurement of depression. 2017 International Conference on Information and Communication Technology Convergence (ICTC), IEEE.
- Kamal, A. and M. Abulaish (2013). Statistical features identification for sentiment analysis using machine learning techniques. 2013 International Symposium on Computational and Business Intelligence, IEEE.
- Mukhtar, N., M. A. J. I. J. o. P. R. Khan and A. Intelligence (2018). 'Urdu sentiment analysis using supervised machine learning approach.' 32(02): 1851001.
- Nasim, Z., Q. Rajput and S. Haider (2017). Sentiment analysis of student feedback using machine learning and lexicon based approaches. 2017 international conference on research and innovation in information systems (ICRIIS), IEEE.
- Pang, B. and L. J. a. p. c. Lee (2004). 'A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts.' Hammad, M. and M. Al-awadi (2016). Sentiment analysis for arabic reviews in social networks using machine learning. Information technology: new generations, Springer: 131-139.
- Ahmad, M., S. Aftab and I. J. I. J. C. A. Ali (2017). 'Sentiment analysis of tweets using svm.' 177(5): 25-29.
- Ahmed, E., M. A. U. Sazzad, M. T. Islam, M. Azad, S. Islam and M. H. Ali (2017). Challenges, comparative analysis and a proposed methodology to predict sentiment from movie reviews using machine learning. 2017 International Conference on Big Data Analytics and Computational Intelligence (ICBDAC), IEEE.
- Kolchyna, O., T. T. Souza, P. Treleaven and T. J. a. p. a. Aste (2015). 'Twitter sentiment analysis: Lexicon method, machine learning method and their combination.'
- Li, Y. and H. Fleyeh (2018). Twitter sentiment analysis of new ikea stores using machine learning. 2018 International Conference on Computer and Applications (ICCA), IEEE.
- Madhoushi, Z., A. R. Hamdan and S. Zainudin (2015). Sentiment analysis techniques in recent works. 2015 Science and Information Conference (SAI), IEEE.
- Narendra, B., K. U. Sai, G. Rajesh, K. Hemanth, M. C. Teja, K. D. J. I. J. o. I. S. Kumar and Applications (2016). 'Sentiment analysis on movie reviews: a comparative study of machine learning algorithms and open source technologies.' 8(8): 66.
- Ortigosa, A., J. M. Martín and R. M. J. C. i. h. b. Carro (2014). 'Sentiment analysis in Facebook and its application to e-learning.' 31: 527-541.
- Oscar, N., P. A. Fox, R. Croucher, R. Wernick, J. Keune, K. J. J. o. G. S. B. P. S. Hooker and S. Sciences (2017). 'Machine learning, sentiment analysis, and tweets: an examination of Alzheimer’s disease stigma on Twitter.' 72(5): 742-751.
- Patil, G., V. Galande, V. Kekan, K. J. I. J. o. I. R. i. C. Dange and C. Engineering (2014). 'Sentiment analysis using support vector machine.' 2(1): 2607-2612.
- Shi, H.-X. and X.-J. Li (2011). A sentiment analysis model for hotel reviews based on supervised learning. 2011 International Conference on Machine Learning and Cybernetics, IEEE
Back Download