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ABSTRACT 

For the first time, a method for frequencies and form determination of hydroelastic natural oscillations of 

hydroturbine head covers has been developed. Eigenmodes of the structure oscillations in fluid were 

investigated as a series in terms of vibration eigenmodes in vacuum. Hydroelasticity problem solving was 

obtained by making use of singular integral equations and a finite element method. A numerical analysis was 

carried out.  

INTRODUCTION 

 

Head cover of a hydraulic turbine is a stationary annular part limiting from above the turbine 

water passageway, and being used for placement of guide vanes and other assemblies. The main 

requirement to it at designing stage consists in that strength and stiffness are to be provided at a 

minimum specific metal content. The head cover structure of hydraulic turbine represents a 

combination of thin-walled bodies of revolution, which are stiffened with a system of closely-

spaced multiply connected meridional plates. However, structural features of the head cover are 

determined by entire layout of a turbine and its type and size. When in operating condition, the head 

cover is affected by significant axis-symmetrical loads both from mass forces and from 

hydrodynamic pressure acting on its surface in contact with water, as well as by radial load from the 

turbine rotor. As concerns previous design versions, the head covers were made as iron castings, 

whereas nowadays they are made as welded structures of carbon steel Ст3сп. It is to note that 

elastic properties of those grey cast iron types as used previously for casting purposes are 

dependable on amount of graphite inclusions: elasticity modulus of these cast iron types makes up 

(40…75)% of elasticity modulus for steel qualities, Poisson's ratio - about 67% [1, 2]. Cast iron 

density makes up (90…95)% of steel density.   

 

Recently, the level of requirements to effectiveness and reliability of power generating 

plants has been raised drastically, and significant utilization of power generation potential in many 

countries in the world, including Ukraine [3] resulted in particular in a necessity to modernize and 

replace hydroturbine equipment at hydroelectric power plants that are in operation for a long time.  

 

When taking decision as to a scope of modernization, due consideration shall be given either 

to necessary replacement or service life prolongation of the hydraulic turbine head cover because it 
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is one of its most metal-intensive assemblies. At Public Joint-Stock Co. “Turboatom”, works are in 

progress for normative basis perfection for service live estimation of hydroturbine head covers [4]. 

Analyzing of their structural features and load application has permitted us to work out firstly an 

effective estimation methodology for strength and dynamic characteristics determination in vacuum 

by making use of the finite element method (FEM) in combination with expansion of the unknown 

quantities of displacements and loads into a Fourier series [4], [5]. Trustworthiness of results 

obtained by this methodology is confirmed in some works [6-8]. Said approach was further 

developed in [9] for strain-stressed state determination of a structurally orthotropic body under non-

symmetrical load application, and this makes it possible to reduce calculations of unknown 

quantities of displacements to solutions of independent problems for each term of Fourier-series 

expansion.  

 

Because of data non-availability in literature as to numerical investigations for 

determination of natural frequencies and oscillation forms of the hydroturbine head covers in water, 

the results given by S.P. Timoshenko for a radial plate oscillating in fluid [10] were used previously 

for estimation of water influencing on their dynamic characteristics. Specified definition of natural 

frequencies of hydroturbine head cover hydroelastic oscillations is indispensable both at estimation 

of its residual service life and at the service life forecasting in case when head covers made of cast 

iron shall be substituted by those ones made of steel, because of a significant difference in elastic 

characteristics between them. This problem is dealt with in this paper, in which in contrast to [10] 

oscillation forms of the head cover in fluid are represented in terms of form-wise decomposition of 

its oscillations in vacuum. 

MATRIX CONSTRUCTION OF ASSOCIATED MASSES OF A STRUCTURE 

INTERACTING WITH FLUID 

Let us write the free oscillation equation for a structure, some surfaces of which are in 

contact with water, in form of a matrix as follows: 

[K–
2
(Me + Ml)]W=0,     (1) 

where: K, Me, Ml – matrices of stiffness, structure masses and associated masses of fluid;  - natural 

frequency; W – matrix, columns of which are eigenvectors of structure oscillation in water. When 

applied to the finite element method, components of vectors W are amplitude displacements of 

finite-element lattice nodes of the structure. 

 

In order to determine matrix elements Ml, it is necessary to calculate pressure that acts on 

structure surfaces being in contact with fluid. Let us assume that fluid is ideal and non-

compressible, fluid motion is considered to be without vortices. Fluid velocity can be represented in 

the form of: 

),,,(),,(),,,( 0 tzyxgradzyxvtzyxv 


                (2) 
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where:  zyxv ,,0


– velocity vector of non-turbulent fluid flow; (x,y,z,t)– potential of velocities 

induced by free oscillations of the structure.  Cauchy-Lagrange integral [11] serves for 

determination of fluid pressure on wetted surfaces of the structure: 

 













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




2

,,,
),,,(),,(

2

0

v

t

tzyx
tzyxpzyxp l



 ,  (3) 

 

where: l – fluid density. By substituting  (2) into (3) and keeping only the terms of the first order of 

smallness, we obtain: 

 
  













 vtzyxgrad

t

tzyx
p l


,,,

,,,
 ,  (4) 

where the point means a scalar product. As indicated in the work [12], an incidence flow velocity 

up to 30 m/s affects insignificantly the frequencies of structure’s natural oscillations in fluid, 

therefore the second component in the formula (4) can be ignored, hence: 

 
t

tzyx
p l




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,,,
 .    (5) 

 

Thus, to find out pressure of fluid onto the structure surfaces, it is necessary to define the 

function (x,y,z,t) by solving Laplacian equation: 

0
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under following boundary conditions:  

    0;
21





 sngrad
t

w
sngrad


, 

where: S1 – population of wetted elastic surfaces of the structure; S2 – population of wetted rigid 

surfaces of the structure; n


– outer normal to the structure.  

 

Based on [13], we will find (x,y,z,t) out in the form of a simple layer potential over surface 

S  limiting the fluid volume under consideration (S= S1 S2) 

   
 

)(
,

1

4

1

0

0 XdS
XXr

XX
S

 


.    (6) 

Here: X0 – point of observation; X – moving point on the surface; r = r(X,X0) – Cartesian distance 

from point X0 to point X; (X) – unknown density.  

 

As follows from [14], we obtain a singular integral equation relatively to (X): 

     
 

 


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S
t

Xw
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1



   (7) 

Here: w – displacement normally to the wetted surface. The integral equation nucleus shall be 

defined by the formula 

 
  
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where: re


– unit vector r


, directed from point X0 to point X. The right part of equation (7) 

represents displacement velocity of strained walls (structure surfaces); the zero right-side part 

corresponds to stationary walls. It is to note that for a case when points X and X0 belong to the same 

surface of a plate or a flat-shaped shell, then  L(X,X0) nucleus numerator is close to or equals to 

zero. If these points lay on sufficiently distant surfaces, then L(X,X0) nucleus denominator is large. 

This explains why in a series of works it came out to obtain good results under assumption that 

 
 
t

Xw
X




 0

0 . Having solved the equation (7) and calculated (x,y,z,t) by the formula (6), we will 

define fluid pressure on the structure walls by using (5).  

 

If we represent all the unknown functions in the form of a product of their amplitude values 

multiplied by exp(it), then: 

 
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where amplitude values are kept with their initial designations and the exponent is eliminated. We 

will solve the equation (7) by a projective method, making use of unknown function representation 

in the form of eigenmode expansions of those displacements normally to a wetted surface, which 

were obtained in the process of problem solving with regard to the structure natural oscillations in 

vacuum. Let be W = Va, where: V – a rectangular matrix consisting of n1-vectors of values for 

displacements normally to the wetted surface calculated through known nodal values of vectors V of 

the structure eigenmode oscillations in vacuum; a – vector of unknown coefficients. Let us 

represent the function (X) for points lying on movable walls by the formula 

1= Vb,                                                                (8) 

where: b – column-vector of unknown coefficients. For points lying on stationary surfaces, we will 

find out the function in the form of an expansion using the system of functions set forth by n2-

vectors of U-nodal values; then 

2=Uc ,                                                                       (9) 

where: c - column-vector of unknown coefficients. In the capacity of U it is convenient to adopt 

normal displacements having been calculated by oscillation eigenmodes of freely-supported thin 

shells, median surface of which coincides with wetted stationary surfaces of the structure. If we 

substitute expansions (8)-(9) into equations (7), premultiply by U
T
 and V

T
 and integrate over 

movable and stationary surfaces that are limiting the fluid (T - transposition sign), we will obtain 

two coupled systems of algebraic equations 
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Let us represent obtained equations in a matrix form 

A11b+A12c= – iA11a     (10) 

   A21b+A22c=0                   (11) 

Square matrices A11 and A22 are symmetric here, in matrices Aij(i,j=1,2) there are per ni-rows 

and nj-columns. If we, based on the equation (11), shall express the vector of coefficients c by 

means of the vector b and substitute it into (10), we will obtain the relationship between b and a: 

  BaiaAAAAAib  


11

1

21

1

221211
. 

This relation permits to express density  at the wetted strained surface through its normal 

displacements taking into account an effect of stationary fluid boundaries. Using (5), (8), and (9), 

we find 
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and derive the formula for performance of fluid pressure forces on normal displacements of the 

wetted structure surface by premultiplying p by V
T
 and integrating over the area of this surface: 
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As we can see, the quadratic form obtained has meaning of kinetic energy of the fluid. In 

this way, the matrix of associated masses of fluid Ml is specified.  

 

Natural frequencies of hydroelastic oscillations of the structure can be found from equation 

(1). By means of premultiplying it by matrix W
T
, and by virtue of vectorial orthonormalization of 

oscillation eigenmodes in vacuum relatively to the structure mass matrix, we will obtain 

   02  aMEa l

T  , 

where:  - scalar matrix, components of which are frequency quadrates of the structure oscillations 

in vacuum, E - scalar identity matrix. Natural frequencies  of hydroelastic oscillations can be 

found by Jacobian method by means of solving the eigenvalue problem 

0 ED  , 

where matrix components D are  

  kiikikik Md  / , 

whereat =
-1

. Eigenvectors a (=1,2,…n1) calculated in such a way are coefficients of free 

oscillation eigenmodes of the structure in vacuum. Using them, we obtain vectors of nodal values 

for natural hydroelastic oscillations of the structure 

W = Ua 

by known eigenvectors U of its oscillations in vacuum. 

 

In order to solve singular equations (7), we will apply the boundary element method [15-19]. 

For this purpose, the range of integration (streamlined surface of the head cover) was dissected into 
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a finite number of tetragonal subdomains NS, in each of them the unknown density having been 

substituted by a constant [19].  

METHOD FOR DETERMINATION OF NATURAL FREQUENCIES AND 

MODES OF HYDROTURBINE HEAD COVERS IN VACUUM 

Determination of natural frequencies and modes of hydroturbine head covers in vacuum can 

be performed on the methodology basis stated in [9].  

 

Dynamics problem of the hydroturbine head cover structure shall be solved based on a 

matrix equation for free oscillations 

K M( ) ( )U p U 2 0 ,   (12) 

where: K and M - stiffness matrix and structure mass matrix, respectively. 

 

On the basis of a linear and square-law representation of an arbitrary triangular finite 

element (FE) in the system of oblique co-ordinates   l m n, ,  [4] special stiffness matrix expressions 

for a finite element (FE) of body of revolution have been defined for an arbitrary term of Fourier-

series expansion. 

 

Energy of one triangular finite element (FE) lmn is written by formula 

   A L G L
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,  

where: (L) - complete vector of main parameters of the triangular element; (G) - its stiffness matrix 
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Here: q
ij
 - matrix-cells allowing for connection between nodes i and j ( , , , , , , )i j l m n    , l,m,n - 

apical nodes of the triangular element,   , , - median nodes. 

 

Block cells G11, G12, G22 (13) for the finite-elements (FE) of meridional plates are calculated 

respectively by formulae such as: 

                                           q D N D drdzlm
l m
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q D N D drdzl
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described in the form of: 
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It seems to be reasonable that in order to reduce calculations, segregation shall be done of 

matrices that are undependable on k (k = 0,1,2,…) 
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As a result, the stiffness matrix cells for the finite element (15) are described by a sum of 

four summands:  
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where:  Dlm
0  - matrix-constants have the following form: 
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For estimation of integrals (16) one-point and three-point Gauss formulae shall be used.  

 

The mass matrix being a part of (12) shall be calculated at dynamics problem solving. The 

finite element mass matrix M and its blocks m11, m12, m22 shall be described similarly (13). Cells of 

the linear block m11 shall be defined by formulae: 
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l

lmn

m l m      ,                                             (17) 

where:  










,,2,1,

,0,2

k

k
W




E 















1 0 0
0 1 0
0 0 1

. 

 

Here: ρ - density of material;   r z r zmn mnln ln  - doubled area of the triangular finite element (FE) 

lmn. 

  

Mass matrix blocks m12, m22 bounded with the quadratic element shall be formed from cells 

of type ml , m  in the form of: 

 m W r E d dl
l

lmn

m l m
     

2 ,  

 m W r E d dl

lmn

m n l m
      

2 .  

 

When solving the dynamics problem of the head cover structure, the matrices of stiffness 

(16) and masses (17) shall be constructed on the basis of the above formulae by a linear and square-

law approximation applied to the finite element. Determination of natural frequencies and 

oscillation forms shall be performed by iteration method within a subspace by solving at each step 

the system of algebraic equations by means of LDL
T
-factorization.   
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FREQUENCIES AND MODES OF NATURAL HYDROELASTIC 

VIBRATIONS OF THE HYDROTURBINE HEAD COVER  

  As an example, we illustrate the head cover of a large-size Kaplan turbine, which is loaded 

not only by mass of the guide vanes turning mechanism but also by a substantially large mass of the 

hydraulic unit rotor because the thrust bearing support is installed on it. The head cover is attached 

by its outer flange to the turbine stator with the help of bolts. Depending on this, on the pitch circle 

diameter for bolts we have  

u u ur z   0 .                                                   (18) 

Since displacements are expanded into Fourier series so in order to satisfy requirements of 

(18) the necessary and sufficiency condition is that amplitude values of displacements of the circle 

with given diameter for each of harmonics would be equal to zero: 

u u ur
k

z
k k( ) ( ) ( )  

 0 . 

 

Computational scheme and the structure finite element quantization are shown at Fig. 1.  

 
Fig. 1: Computational scheme for Head Cover 
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Fig. 2: The first eigenmode of the hydroturbine head cover oscillations taking into account 

associated masses of wicket gate and turbine rotor parts 

 

Trustworthiness of values of oscillations' natural frequencies in vacuum as having been 

calculated on the methodology elaborated, can be confirmed through their comparison with results 

obtained by the finite element method for a spatial structure on the whole (Fig. 2), for which its 

natural frequency makes up 12.2 Hz taking into account associated masses of guide vanes and 

turbine rotor parts. This value concurs with the value obtained by the methodology as above, with 

required computational expenditures for the latter being considerably less. 

 

Investigations were performed on how associated masses of the above mentioned parts 

impact the head cover natural frequencies in vacuum and in water. Computational results are given 

in Tables 1, 2 where natural oscillation forms are characterized by the number of nodal diameters.  

 

Table 1 

Natural frequencies of the hydroturbine head cover oscillations ignoring the mass of wicket gate 

and turbine rotor parts 

Number of nodal 

diameters, KF 

Frequency No. 

KF = 0 1 2 3 

In vacuum 49.8 257.7 289.9 

In water 30.5 194.1 287.3 

KF = 1 1 2 3 

In vacuum 72.3 179.2 238.1 

In water 57.1 160.2 233.3 

 

Table 2 
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Natural frequencies of the hydroturbine head cover oscillations taking into account the mass of 

wicket gate and turbine rotor parts 

Number of nodal 

diameters, KF 

Frequency No. 

KF = 0 1 2 3 

In vacuum 12.22 55.8 82.8 

In water 11.7 55.7 81.7 

KF = 1 1 2 3 

In vacuum 14.9 38.8 54.5 

In water 14.7 38.7 53.9 

 

CONCLUSIONS 

1. For the first time, a method for determining natural frequencies and hydroelastic vibration 

modes of hydroturbine head covers has been elaborated, which is based on combination of the 

finite element method, Fourier-series expansions and boundary element method. For this 

purpose, unknown eigenmodes of hydroelastic vibrations are expanded into series in terms of 

oscillation eigenmodes in vacuum. 

2. The method proposed permits substantially to specify more precisely - as compared with an 

assessment used previously in [10] - the hydroturbine head cover dynamics characteristics and 

to perform frequency separation away from dynamic load frequencies, thus increasing structure 

reliability as early as at design and modernization stage. 

3. For the full-scale head cover structure of Kaplan hydraulic turbine considered, influence of 

water on natural frequencies is insignificant; water influence is lowering with frequency number 

increasing. 

4. Value of associated masses of the wicket gate parts and hydraulic unit rotor parts produces a 

noticeable effect not only on the natural frequencies of the head cover in vacuum, but also on 

their lowering related to the head cover interaction with water. 
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